If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-15x-17=0
a = 2; b = -15; c = -17;
Δ = b2-4ac
Δ = -152-4·2·(-17)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-19}{2*2}=\frac{-4}{4} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+19}{2*2}=\frac{34}{4} =8+1/2 $
| 9x+3=1x+(-3) | | n/20=7-n/20 | | 3x+5=-7/9 | | x-(x*0.2)=349 | | 36+46+x=180 | | 118+33+x=180 | | 24-3x=7-4x | | 3c-15=c+7 | | 44+104+x=180 | | 51+36+x=180 | | 37+63+x=180 | | 3x+4=2x+9 | | 2x^2+32x+272=0 | | -9x-9=2x-2 | | 27+63+x=180 | | 2(-6x-3)=(5x-1) | | 73+68+x=180 | | 7+5.50x=6+6.25x | | x-(.3x)=620 | | 7(x+6)=-18 | | 7(3x−2)=49 | | 6x+4x−9=41 | | -2(x-1)=4(2-3x) | | −3(r+2)=−47 | | -5(2-4x)=30 | | 4x-7=39x | | 8y−1=2y+11 | | 19=8a+7-6a | | 46=2x+5x-3 | | 6=2x=7x-9 | | -7(3x-3)+8=-21x+29 | | 1/4x+2/3=1/4(x+3) |